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Abstract

This article is a summary of the technology issues and challenges of data-intensive science and cloud computing
as discussed in the Data-Intensive Science (DIS) workshop in Seattle, September 19–20, 2010.

Introduction

The recent trend in scientific and related applications
has been toward using the cloud infrastructure to allow

users to deploy their applications and data by providing the
infrastructure, platform, and software as a service. Funda-
mentally speaking, cloud computing is a model for enabling
convenient, on-demand network access to a shared pool of
configurable computing resources. This includes networks,
servers, storage, applications, and services that can be rapidly
provisioned and released with minimal management effort
and service provider interaction. Even though there have been
exciting developments in terms of large cloud infrastructures
(e.g., Amazon S3/EC2, Microsoft Windows Azure), they may
not offer enough flexibility to users in terms of application
usability and direct user control. As a result, we need con-
siderable research toward developing next-generation cloud-
computing architectures.

The computing landscape has been constantly evolving
over the last few decades. Current high-performance and
data-intensive computing systems rely exclusively on com-
modity components largely developed for the PC and server
markets that are able to capitalize on the enormous design
and fabrication costs of these components.

One such commodity component is the graphics processor
unit (GPU) (Fig. 1), developed to address the demand for
high-fidelity interactive computer games as well as sophisti-
cated user interfaces in computers and mobile devices. High-
end graphics processing units (GPUs) now provide an order
of magnitude more computing power than other commodity
processors and offer a higher performance/price ratio.

Moreover, this trend is expected to continue into the near
future.

The use of GPUs or many-core processors as accelerators
brings many challenges. A new set of parallel algorithms and
programming tools are needed to exploit the data-parallelism
and high number of light-weight cores on these processors.
Much of the recent work has fallen into the areas of coarse-
grain parallelization, that is, new programming models and
different ways to exploit threads and data-level parallelism. In
the future, we need better and automated ways to improve
performance by utilizing fine-grained parallelism. The main
difficulty in terms of data-intensive computing is the distri-
bution of data memory accesses across the data caches of each
core, especially when cache sizes in these many-core proces-
sors are highly variable. Poor choices in the placement of data
accesses can lead to increased memory stalls and low resource
utilization. Finally, we need novel and improved cloud
computing architectures that include support for these ac-
celerators and provide sufficient flexibility for applications to
utilize them.

Computation

Current state

Distributed computing platforms constructed from com-
modity components have dominated high-end computing for
more than a decade. These range from the 16-node laboratory
cluster to the immense systems operated by the National
Science Foundation (NSF) Teragrid and commercial cloud
providers. Shared-memory supercomputers have also been
used, although they have not been as cost effective for most
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applications. Consequently, scaling applications requires
adopting a distributed computing model such as MPI or Map-
Reduce. Moreover, the recent trend in processing architec-
tures is to increase the number of cores or data parallelism,
and not the clock speed of individual processors. As a result,
even applications operating at modest scales must adopt
parallel approaches.

Applications developed for one platform are often poorly
suited for another. The trend toward packaging application
stacks as virtual machines helps streamline deployment, but
portability is often limited to individual service providers
(e.g., Amazon Web Services).

Barriers

Programming models for distributed systems are hard to
use. Exploiting chip-level parallelism is challenging, espe-
cially for data-intensive computation. With the exception of
Map-Reduce style systems, such as Hadoop, existing pro-
gramming models are insufficiently resilient to cope with
anticipated component failure rates in very large systems. The
requirement for CPU and data to come together adds to the
challenge of adopting cloud platforms for widely distributed
instruments. Commercial cloud and Teragrid systems lack the
configuration flexibility expected by some users. Commercial
cloud prices are often uncompetitive with large private cloud
deployments.

Future/outlook

Funding barriers to choosing the most appropriate plat-
form for a given task must be removed. Ideally, computa-
tional infrastructure should support the notion of
‘‘supercomputers as accelerators’’ in which applications
launched from portable clients automatically execute on ap-
propriate, elastic, remote platforms.

Systems should enable users to ask for answers that are
‘‘good enough’’ relative to prespecified constraints on the cost
and time needed to stage data and complete the necessary
calculations.

Innovators must accept that the components that define
‘‘commodity’’ systems tomorrow will differ from those of

today. These trends include increasing chip level parallelism
in CPUs and GPUs, increasing scale and bandwidth in shared
memory support (e.g., Intel QPI, POWER7 MCM, AMD Hy-
pertransport), and new layers in the memory and storage
cache hierarchy (e.g., flash-based SSDs, phase-change mem-
ory). Success depends largely on the designer’s ability to hide
this complexity from users while preserving performance
gains.

Storage

Current state

Storage support for data-intensive computing currently
varies considerably, depending on the service provider and
the scale at which it is deployed. At the high end, two models
dominate. Among supercomputer deployments, shared
storage pools based on enterprise hardware managed by
cluster file systems are standard. A variety of approaches for
data warehousing based on shared nothing architectures are
used in cloud systems, constructed primarily from commod-
ity components, where data is replicated for high availability.
Some commercial ‘‘platform as a service’’ providers also rely
on redundant commodity hardware; however, individual
virtual machine instances access this storage as a shared pool.
The cost per byte of the most widely implemented approaches
remains much more costly than commodity disk drives
(Fig. 2).

These approaches need host systems, controllers, inter-
connects, software, and data center infrastructure to
achieve maximum functionality. Researchers are faced
with preserving large and growing volumes of data, but
economical options for archiving large data sets are un-
common today.

FIG. 1. GPU image.

FIG. 2. Comparison of the cost of 1 petabyte for various
solutions.
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Barriers

Data center costs (such as power, infrastructure, and oper-
ations) dominate equipment costs when using commodity
hardware. Higher density disks help, but maintaining redun-
dant systems to address the reliability and performance limi-
tations of inexpensive hardware adds complexity to solutions.

Shared storage pools allow users to interact with their data
in a familiar manner. However, if storage is directly attached to
servers (i.e., using shared nothing architecture), then applica-
tions that require frequent random access to their data must be
partitioned to maximize local data accesses to the processor
that holds the data. New applications should be designed with
such partitioning in mind. However, this is a new kind of
thinking for many developers of scientific applications.

Applications utilizing many files that must be opened and
closed frequently cause an even more basic performance
problem. This problem commonly occurs at supercomputer
centers as users attempt to scale their difficult to support ap-
plications. Breaking these habits is simpler than refactoring
for shared nothing, but still requires effort, effort that is re-
peated with every new user. Finally, offering services in-
tended to operate over long periods, such as data archives,
present funding challenges.

Future/outlook

To be most effective, either all data must be warehoused on
the platform where it will be analyzed (shared nothing), or the
performance of shared storage pools and storage intercon-
nects must scale with the available CPU power. Ultimately,
hybrid approaches in which node-local storage serves as a
layer in the I/O hierarchy are likely to continue to play a role.
Shared nothing and hybrid approaches will benefit from im-
provements in systems management and user interfaces that
hide their complexity. Very fast networks connecting com-
puters and instruments are essential for data provisioning.
Ideally, archiving systems would allow users to pay once and
store forever.

Network

Current state

Current campus networks are highly variable. Although
the typical campus backbone is capable of 10 Gbps band-
width, individual buildings may have 1 Gbps or less, and
individual labs and desktops within these buildings typically
have 1 Gbps or less.

Off-campus bandwidth availability is dependent on the
nature of the network. Typically, Research 1 universities have
dedicated bandwidth to Internet 2 and other national net-
works. Today, the intelligent filtering of data to remove bad
data sets and reduce the size of data sets is done manually,
with only a small amount of automation. Departmental net-
works must cope with firewalls, which are usually managed
at the department or college level.

Barriers

Typical barriers to adoption of improved networks are the
decentralized growth of DIS data sources and the acquisition
of instruments not coupled with campus infrastructure im-
provements. Funding improved bandwidth to buildings and

laboratories is difficult in the current financial environment.
Acquisition of off-campus bandwidth is expensive, although
somewhat aided by the recent Broadband Technology Op-
portunities Program awards as part of the American Recovery
& Reinvestment Act. Intelligent data filtering is domain spe-
cific and requires time and effort to develop the required rules
and software. Working around firewalls is difficult because
network and system administrators are sometimes more
concerned about ensuring security than enabling research.

Future/outlook

In the future, we need a campus data cloud that is designed
and implemented to address DIS. An intelligent campus
network needs a hierarchical hub arrangement. Instruments
and other data sources should have sufficient bandwidth
connections (10 Gbps now, 100 Gbps or greater in the future)
to the hubs. The hubs should, in turn, be connected to data
centers at higher bandwidths (100þGbps.) With sufficient
off-campus bandwidth, we can have regional data centers
that form a regional cloud, which in turn connects to the na-
tional cloud. Intelligent data filtering will ease the researchers’
selection of data that needs to be moved to the campus/
regional/national cloud.

Campus executives and Chief Information Officers need to
understand DIS and the key role that campus infrastructure
plays in effectively preparing for the future of DIS. Research
needs to clearly articulate the expected return for these in-
frastructure investments.

Output and Visualization

Current state

If data and computation are housed in the cloud, then it
becomes the responsibility of the cloud provider to develop
the tools for visualizing and presenting the output. Today,
most of the analytical software used to process the data as-
sumes that the consumption of the output will be at the same
location and is designed for a typical desktop-type environ-
ment. High-end visualization typically is centralized at a few
locations on campus. Thus, the output that is created does not
know or care about either the network (bandwidth and la-
tency) over which the results are to be piped or the resolution
of the device used for viewing the output. Finally, the ana-
lytical software is often limited in the type of device that can
display its output.

Analytical software has to be made network and output
device aware and device agnostic.

Future/outlook

It is clear that the devices over which users will be con-
suming the output of their computations will have varying
resolution and interactivity (iPhone to iPad to Desktop to
Cave) and will be connected over networks of different ca-
pacity (3G/Wimax, WiFi, 100 Mbps, 1 Gbps). Thin client
output devices, in which only the pixels to be drawn are sent
over the channel, will be increasingly important. Thus, the
analytical software of the future should intelligently produce
output that is network and device aware. Further, the soft-
ware should dynamically change in the network.

Most campus administrators already see the prolifera-
tion of devices that connect to the campus network and are
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moving to provide support for these devices. They need to be
made aware that DIS also has similar needs and should be
supported along with the administrative functions.

Hardware and Datacenter Trends and Constraints

Current state

Large computing environments are trending toward
movement from special purpose to commodity hardware.
However, efficiencies that have been lost along the way are
becoming apparent. Lots of tiny computing clusters at all
levels of organizations are underutilized and not properly
considered by accounting (e.g., power cost is hidden in
overhead). Most software has been developed for sequential
execution. Although some of today’s software exploits par-
allelism, this has yet to become status quo. The move to a
distributed model has been difficult if not impossible for
nonexpert software developers. Current cloud vendors have
chosen their main users from domains that do not overlap
with data-intensive scientific investigation (DISC). Data
gathering is currently done (mostly) in small, distributed in-
crements. This incurs large overhead, low utilization, and
fragmentation of data availability. Archiving the data, ana-
lytic software, and analysis results is difficult and expensive.
Thus, result reproduction or regeneration in the future is al-
most impossible (Fig. 3).

Barriers

Hardware innovation is challenging because of the reliance
on commodity solutions. It is difficult to utilize and depend
upon shared resources. The researcher is forced to give up
control and, simultaneously, is not held accountable for the
hidden costs. Current programming models do not lend
themselves to efficient, automatic parallelization and distri-
bution and require both domain knowledge and technical
skills. Cloud vendors do not see a business case for DISC.
Current cloud models require homogeneous facilities,
whereas domain-specific hardware solutions might be re-
quired for DISC. Generation of local data allows for control,
filtering, and validation by the researcher, a convenience that
few want to lose (no one wants to FedEx their samples). Fur-

ther, prestige is based on local instrumentation (e.g., every
hospital wants the latest MRI scanner). Today, research done in
a way that is maintainable after the work is done is expensive.

Future/outlook

Specialized technologies need to overcome the reliance on
current commodity hardware. The goal is to move successful,
specialized technologies into future commodity solutions. We
need to foster the move to greater use of shared resources by
making it desirable, including maintenance, availability,
support, programmability and flexibility. The rise of data-
based analysis (nonprogramming) and automatic scalability
(minimal programming) will become prevalent, along with
deep control of execution for the technically skilled. The next
large segment of users of the cloud will be DISC-based and the
vendors, through their own self-interest, will be forced to
support them. The heterogeneous nature of domain require-
ments will force private clouds that are more tailored to a
given environment or hosted clouds for specific purposes.
Due to the sheer volume of data, efficiencies and overhead
costs, pooled sensor locations could become the norm. Fur-
ther, they may even be colocated (or ‘‘near-located’’) to data
centers (e.g., sequencing farms), solving many of the identi-
fied problems. By moving work to a cloud model (private/
public), a virtual machine environment makes archiving and
rerunning cheaper and easier to accomplish.

Representation and Engagement with Society

We need to provide more support for innovative datacenter
designs. A change of mindset needs to be promoted for the
benefits of leveraging shared resources. We need to teach new
models for generating results without requiring esoteric pro-
gramming skills. Funding DISC projects on clouds will show
the limitations and point the direction to architecture changes.
Funding of shared instrument facilities would help promote
efficiencies. Requiring proper documentation and archiving
to receive funding could motivate change.

Effective Use of Time and Resources

Current state

Scientists spend a lot of time preparing their data for com-
putational analyses. Most of this time is spent cleaning, trans-
forming, and validating the datasets. When cleaning the
datasets, scientists utilize statistics to filter their data, identify
and fix outliers or missing data, and rationalize irregularities in
data formats (e.g., ad hoc spreadsheets). The transformations of
datasets consist of changes in format, data type, units of mea-
sure, although validation can occur at the level of data and/or
schema. Currently, there are some domain-specific agreed-upon
standards, although these standards have not been widely
adopted. Along with the preparation of datasets, scientists are
developing the tools to move and visualize their data.

Barriers

There are not many general-purpose tools for automating
data processing, nor is there sufficient funding to develop
such tools. In some cases, the state of the art is not good en-
ough to automate this work. Before development of tools,
scientists in a domain must agree upon and standardize theirFIG. 3. A large server farm.
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formatting requirements, allowing for the development of
software interfaces that currently do not exist.

Future/outlook

In general, scientists require more automation and in-
creased use of existing automation. It would be useful to sci-
entists if they had access to laboratory information systems,
more standards, and open-source libraries of reusable tools. It
would also benefit the scientist to develop tools that are easily
adaptable when new formats are introduced.

Application Trends

Current state

Software used by research groups to analyze data is often
written by members of the research team. One advantage of
this approach is that the software is being written by domain
experts, making it more likely that it correctly addresses the
scientific needs. Also, because the applications are being de-
veloped for use by a small group of users to handle very
specific tasks, basic needs of the users are considerably easier
to meet.

However, there are disadvantages to this approach as well.
One disadvantage is excessive duplicated effort (and, hence,
extra expense). Multiple research groups write multiple soft-
ware applications that essentially do the same thing, accord-
ing to the NSF Office of Cyberinfrastructure Task Force on
Data and Visualization (NSF_OCI_TFDV, in press). Further,
people in research groups writing software typically have
minimal software development expertise. As a result, al-
though the software may work to meet the current needs of
the group, when needs change it may be very difficult to
modify the software. Depending on the changes in function-
ality it may even be easier to throw away the old software and
rewrite new software from scratch. Also, if there is interest
from other research groups in using this software, it may be
difficult to modify the software to be usable by these other
groups. In addition, the lack of standard data formats makes it
difficult for software applications built by different research
groups to interoperate. Interweaving software may require
building custom adaption layers.

Another drawback of software developed in-house is that it
will normally be geared towards nonscalable architectures,
modifying it to work with scalable architectures may be
prohibitively difficult.

Barriers

To improve the current situation, several barriers need to be
overcome. More general-purpose software may not suit re-
searchers’ specific needs. In both reality and perception, re-
searchers may resist using externally developed software for
fear of not having control of the development of the software
(e.g., not controlling the priority of new features). Writing more
general-purpose software will require standard data formats.
Getting a consensus on these formats will likely be difficult.

Understanding science and writing robust software are
both challenging tasks. Writing scientific software requires
the developers to have some understanding of the scientific
domain; developers with this knowledge are not very com-
mon. Reciprocally, because the software development is dri-
ven by the needs of the research group, it is important for

scientists to have some understanding of software design and
development practices. Writing software to be more flexible
and robust has immediate costs, but the benefits are typically
only seen in the future. As a result, much software is fragile
and not reusable. These challenges are not unique to scientific
software, but it is a problem with software in general. Good
software development requires a conscious effort to pay the
short-term price for the long-term benefit.

Pure technical challenges also exist. Writing scalable soft-
ware is difficult and, because most software developers do not
work on these kinds of systems, it is a skill that most of them
do not possess. Even if the developers are available, complex
applications may make writing professional quality scalable
software too expensive for an individual researcher. Also,
software-licensing models are often incompatible with using
shared or remote resources.

Finally, acquiring funding to create sustainable, sharable,
scalable, and general-purpose software is currently difficult.

Future/outlook

The scale of science should be limited solely by the re-
searcher’s vision and not by the challenges presented by data
size, data complexity, or computational demands. Scientists
have valuable skills and should spend their time doing sci-
ence, not programming or doing data management. Pro-
gramming models that make the scale of computation
transparent to developers would be a big step forward.

Conclusion

Encouraging broader collaboration will motivate the need
for sharable software. Collaborations will be more successful,
further motivating adoption of more efficient software de-
velopment strategies. Research groups that develop software
could get credit for advancing research if their software is
used in discovery. Finally, funding agencies would encourage
and fund development of sustainable, scalable software.

Acknowledgments

This policy report and DIS workshop were supported by
SCRI and NSF Grant DBI-0969929 to E. Kolker (Principal in-
vestigator). The views expressed in this article are entirely
personal opinions of the authors and do not necessarily rep-
resent positions of their affiliated institutions or NSF.

Author Disclosure Statement

The authors declare that no conflicting financial interests
exist.

Reference

National Science Foundation, NSF (2011). Office of Cyber-
infrastructure, Task Force on Data and Visualization (in press).

Address correspondence to:
Eugene Kolker, Ph.D.

Seattle Children’s Research Institute
1900 Ninth Avenue

C9S-9
Seattle, WA 98101

E-mail: eugene.kolker@seattlechildrens.org

TECHNOLOGY AND DATA-INTENSIVE SCIENCE 207




