
UNRAVELING THE 
COMPLEXITIES OF 

LIFE SCIENCES 
DATA

Introduction

With	 the	 Completion	 of	 the	 Human	 Genome	 Project		
and	the	advent	of	high-throughput	analysis	technologies,	21st-
century	 life	 sciences	has	entered	 the	 fourth	paradigm	of	data-
enabled	science	and	the	realm	of	big	data.1	These	data	will	enable	
incredible	possibilities	for	discovery,	solutions,	and	even	cures,	
yet	they	also	bring	with	them	the	challenges	of	the	5	Vs	of	big	
data:	volume,	veracity,	velocity,	variety,	and	value.	Life	sciences’	
big	 data	 are	 generally	 challenging	 for	 their	 variety,	 value,	 and	
critical	need	for	veracity.	This	differs	from	the	situation	in	mar-
keting	or	banking,	where	efforts	 for	optimization	find	volume	
and	velocity	to	be	generally	the	biggest	challenges.	It	is	disheart-

ening	to	realize	that	in	this	internet	age,	when	information	about	
pizza	restaurants	is	at	our	fingertips,	it	can	be	a	challenge	to	find	
crucial	drug	trial	information	and	that	precious	resources	(both	
people	and	funding)	cannot	be	fully	utilized	due	to	inadequate	
cyberinfrastructure	 and	 organization.2,3	 Just	 as	 the	 life	 science	
community’s	tools	and	analyses	need	to	be	at	their	most	robust	to	
control	the	“data	deluge,”	they	are	instead	stagnating,	(e.g.	clus-
ters	of	orthologous	groups	of	proteins,	COGs)	or	even	ending,	
(e.g.	Peptidome	&	The	Arabidopsis	Information	Resource).4–7

The	 scale	 of	 biological	 data	 is	 exponentially	 increasing	
with	 sequencing	 technologies	 now	 producing	 data	 at	 a	 rate	
exceeding	the	growth	in	computing	power	predicted	by	Moore’s	
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Abstract

The	life	sciences	has	entered	into	the	realm	of	big	data	and	data-enabled	science,	where	data	can	either	empower	
or	overwhelm.	These	data	bring	with	them	the	challenges	of	the	5	Vs	of	big	data:	volume,	veracity,	velocity,	variety,	
and	value.	Both	independently	and	through	our	involvement	with	DELSA	Global	(Data-Enabled	Life	Sciences	
Alliance	International,	DELSAglobal.org),	the	Kolker	Lab	is	creating	partnerships	that	identify	data	challenges	
and	solve	community	needs.	We	specialize	in	solutions	to	complex	biological	data	challenges,	as	exemplified	by	
the	community	resource	of	MOPED	(Model	Organism	Protein	Expression	Database,	MOPED.proteinspire.org)	
and	 the	 analysis	 pipeline	 of	 SPIRE	 (Systematic	 Protein	 Investigative	 Research	 Environment,	 PROTEINSPIRE.
org).	Our	work	extends	into	the	computationally	intensive	tasks	of	analysis	and	visualization	of	millions	of	pro-
tein	sequences	through	innovative	implementations	of	sequence	alignment	algorithms	and	creation	of	the	Protein	
Sequence	Universe	tool	(PSU).	Pushing	into	the	future,	our	lab	is	pursuing	integration	of	multi-omics	data	and	
exploration	of	biological	pathways,	as	well	as	assigning	function	to	proteins	and	porting	solutions	to	the	cloud.	Big	
data	have	come	to	the	life	sciences;	discovering	the	knowledge	in	the	data	will	bring	breakthroughs.
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Law	(10,000-fold	improvement	in	sequencing	vs.	16-fold	improve-
ment	in	computing	over	Moore’s	Law).8,9	In	addition,	the	majority	
of	research	is	generated	in	isolation	and	demonstrates	only	an	11%	
rate	 of	 reproducibility	 according	 to	 a	 recent	 study.10	 Moreover,	
27%	(+/-9%)	of	cancer	cell	lines	are	misidentified,	one	out	of	three	
proteins	is	unannotated,	and	according	to	one	report,	up	to	85%	
of	research	efforts	are	wasted	due	to	 inadequate	production	and	
reporting	practices.10–13

Beyond	the	obvious	issues	of	scale	and	reproducibility,	the	com-
plexity	and	diversity	of	these	data	poses	the	greatest	challenge	to	
unlocking	knowledge	and	scientific	discovery.	Modern	biological	
data	spans	a	diverse	collection	of	omics	fields,	including	genomics,	
metagenomics,	 proteomics,	 transcrip-
tomics,	metabolomics,	and	lipidomics.	
These	 omics	 data	 are	 generated	 by	
various	 types	 of	 high-throughput	
technologies,	 including,	 for	 example,	
next-generation	 sequencing,	 mass	
spectrometry,	 imaging,	 arrays,	 liquid	
chromatography,	 and	 flow-cytometry.	
Relatively	simple	experiments	generate	
data	 on	 the	 terabyte	 scale.	 Supporting	
storage	 and	 analysis	 of	 these	 data	 re-
quires	 massive	 amounts	 of	 computa-
tional	power	linked	to	an	endless	array	
of	 databases,	 data	 formats,	 software	
packages,	 and	 pipelines.	 In	 addition	 to	 these	 requirements,	 we	
need	comprehensive	understanding	of	the	metadata,	experimen-
tal	protocols,	and	standard	operating	procedures	unique	to	each	
omics	and	high-throughput	technology.

As	 the	 first	 step	 to	 unraveling	 the	 complexities	 of	 biology,	 it	 is	
necessary	 to	 understand	 the	 needs	 and	 challenges	 of	 the	 life	
sciences	 community	 with	 respect	 to	 data-enabled	 science.	
DELSA	Global	(Data-Enabled	Life	Sciences	Alliance	International,	
delsaglobal.org)	 was	 formed	 to	 accelerate	 the	 impact	 of	 data-
enabled	life	sciences	research	on	the	pressing	needs	of	the	global	
society.	DELSA	Global	was	forged	on	the	basis	of	the	Data-Intensive	
Science	Workshops	(DISW-I	and	II)	in	2010–2011,	sponsored	by	
the	National	Science	Foundation	(NSF)	with	matching	support	by	
Seattle	Children’s	Research	Institute	(SCRI).2,14–20	The	workshops	
were	 attended	 by	 experts	 from	 many	 disciplines,	 representing	
academia,	 government,	 nonprofit	 research	 institutes,	 private	
enterprise,	policy-making	bodies,	and	media.	

Currently,	 DELSA	 Global	 is	 building	 an	 ecosystem	 to	 provide	 a	
leading	voice	and	coordinating	framework	for	collective	innova-
tion	in	data-enabled	science	for	the	life	sciences	community.	The	
alliance	has	endorsed	eight	high-impact	projects	 that	are	poised	
to	 advance	 its	 mission	 and	 inspire	 new	 modes	 of	 business	 and	
innovation.	As	one	of	 the	 founding	members	of	DELSA	Global,	
the	Kolker	Lab	strives	to	understand	the	needs	of	the	life	sciences	
community	 in	 order	 to	 develop	 effective	 solutions	 for	 complex	
biological	data	challenges.
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Surveying the Life Sciences Community

The	Kolker	Lab	has	carried	out	a	number	of	 initiatives	to	deter-
mine	 the	 needs	 of	 the	 life	 science	 community.	 These	 initiatives	
include	(1)	a	survey	of	proteomics	researchers	in	the	United	States	
by	 the	 University	 of	 Washington	 Business	 School	 to	 assess	 data	
and	analysis	needs,	(2)	organizing	DISW-I	and	DISW-II,	and	(3)	
leading	efforts	to	found	and	promote	DELSA.

As	part	of	the	marketing	evaluation	plan	under	our	current	NSF	
project,	University	of	Washington	MBA	students	surveyed	life	sci-
entists	and	proteomics	experts.	The	survey	indicated	the	immedi-
ate	need	for	tools	and	resources	to	easily	access	publicly	available	

proteomics	experiments.	In	particular,	
for	biomedical	researchers	unfamiliar	
with	 mass	 spectrometry	 technology,	
the	 important	 criteria	 included	 reli-
able	 data,	 statistically	 valid	 results,	
analysis	 tools	 with	 a	 user-friendly	
interface,	 transparent	 reporting	 of	
results,	 and	 the	 ability	 to	 share	 data.	
This	 survey	 led	 directly	 to	 the	 devel-
opment	of	MOPED,	the	Model	Organ-
ism	Protein	Expression	Database	(for	
details,	see	below).21	

The	DISW-I	identified	three	top	chal-
lenges	 and	 opportunities:	 (1)	 the	

research	necessity	of	the	life	sciences	community	to	integrate	work	
across	diverse	domains	and	with	computer	and	data	experts,	(2)	
a	pressing	need	 for	 reproducibility	because	of	 its	critical	 impor-
tance	 toward	 scientific	 progress	 and	 the	 accelerated	 rate	 of	 raw	
data	 production,	 and	 (3)	 a	 perceived	 gap	 between	 the	 needs	 of	
the	data-enabled	life	sciences	and	current	funding	initiatives	and	
merit	evaluation	criteria.15–20	The	DISW-II	proposed	to	establish	a	
community	alliance	with	the	goals	to	(1)	synergize	research	and	
educational	 efforts	 across	 the	 life	 sciences	 using	 contemporary	
computing	approaches	to	comprehend	large	and	diverse	data,	(2)	
become	an	integral	part	of	the	international	and	national	develop-
ments	to	address	the	challenges	and	explore	opportunities	of	data-
enabled	sciences,	and	(3)	cohesively	address	the	community	needs	
through	creation	of	the	supporting	ecosystem	of	federal	agencies,	
foundations,	academia,	and	industry.2	

The	opportunities	and	challenges	of	big	data	in	life	sciences	research	
compelled	 the	 participants	 to	 found	 DELSA	 Global.2,22,23	 Through	
intense	 discussions	 and	 formal	 and	 informal	 surveys,	 the	 newly	
formed	 alliance	 has	 made	 significant	 efforts	 to	 identify	 the	 strate-
gic	needs	of	the	life	sciences	community	and	ways	to	address	them.
	
Solutions for Complex Biological Data

Integrated data resources
To	 simplify	 the	 comparison	 and	 sharing	 of	 proteomics	 data,	
enable	 knowledge	 discovery,	 and	 generate	 new	 hypotheses,	 the	
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THESE DATA POSES THE 
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UNLOCKING KNOWLEDGE AND 

SCIENTIFIC DISCOVERY.”

Higdon	et	al.



BD19

Kolker	Lab	developed	MOPED	(moped.proteinspire.org).21	MO-
PED	 provides	 concise	 summaries	 of	 protein	 identification,	 rela-
tive	 and	 absolute	 (concentration,	 ng/mL)	 expression,	 and	 other	
quantitative	data	 from	standardized	analysis	of	model	organism	
studies.	 MOPED	 supports	 querying,	 browsing,	 and	 visualizing	
data	across	organisms,	tissues,	conditions,	and	pathways	(Fig.	1).	
It	also	links	to	protein	and	pathway	databases,	 including	Entrez,	
GeneCards,	KEGG	(Kyoto	Encyclopedia	of	Genes	and	Genomes),	
Reactome,	and	UniProt.24–28

Currently,	MOPED	2.1	contains	over	43,000	proteins	with	at	least	
one	spectral	match	and	more	than	11	million	high-certainty	spec-
tra.	MOPED	is	continuously	updated	and	enhanced	with	the	next	
major	release	scheduled	for	November	2012.	In	addition	to	public	
access,	MOPED	provides	a	private	entry	that	allows	users	to	share	
and	explore	their	data	prior	to	publication.	According	to	Google	
Analytics,	 within	 the	 past	 year	 MOPED	 has	 had	 nearly	 20,000	
unique	users	from	over	90	countries.
	
Biological data pipelines
Complex	 high-throughput	 biological	 data	 typically	 require	
analytical	pipelines	 to	process,	 integrate,	and	analyze	data.	With	
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NSF	 support,	 the	 Kolker	 Lab	 has	 developed	 the	 Systematic	
Protein	Investigative	Research	Environment	(SPIRE,	proteinspire.
org).29,30	SPIRE	was	designed	in	response	to	the	community	need	
for	 a	 reliable	 and	 simple	 yet	 powerful	 and	 flexible	 proteomics	
analysis	 pipeline.	 SPIRE	 integrates	 the	 best	 open-source	 search	
tools	and	data	analysis	methods	for	mass	spectrometry	proteomics	
analysis,	 such	 as	 X!Tandem,	 Open	 Mass	 Spectrometry	 Search	
Algorithm	 (OMSSA),	 and	 a	 composite	 search.	 Novel	 analysis	
methods	 implemented	 in	 SPIRE	 produce	 a	 50	 to	 85%	 increase	
in	 protein	 IDs	 over	 other	 current	 combinations	 of	 scoring	 and	
single	search	engines,	while	also	providing	accurate	multifaceted	
error	 estimation.	 Through	 MOPED,	 SPIRE	 combines	 analysis	
results	 with	 data	 on	 protein	 function,	 pathways,	 and	 protein	
expression	 from	 model	 organisms	 and	 also	 connects	 results	 to	
publicly	available	proteomics	data.	SPIRE	 is	used	as	a	 standard-
ized	 environment	 for	 the	 processing	 and	 analysis	 of	 proteomics	
data	for	MOPED.21

	
Determining the function of protein sequences
Functional	annotation	of	newly	sequenced	genomes	and	metage-
nomes	 is	 one	 of	 the	 principal	 challenges	 in	 the	 life	 sciences.	
Rapidly	 advancing	 sequencing	 technologies	 are	 exponentially	
expanding	 the	 protein	 sequence	 universe	 (PSU).31	 Without	
updated	methods	in	functional	and	comparative	genomics,	com-
prehensive	 approaches	 for	 assigning	 functional	 annotation	 to	
genes/proteins	could	not	keep	up	with	the	ever-expanding	size	of	the	
sequence	universe	(e.g.,	the	prominent	COG	database).4	There	has	
never	been	a	greater	need	for	a	scalable	and	efficient	computational	
resource	 to	 visualize,	 explore,	 and	 assign	 biological	 meaning	 to	
new	proteins.	

All-versus-all sequence alignments
Our	laboratory	completed	the	first	of	a	kind	all-versus-all	sequence	
alignment	for	9.9	million	proteins	in	the	UniRef100	database.32,33	
The	alignment	was	done	on	the	Microsoft	Windows	Azure	cloud	
system34	with	475	eight-core	virtual	machines	that	produced	over	
3	billion	filtered	records	in	six	days.	Using	the	normalized	align-
ment	score,	we	have	assigned	68%	of	5.1	million	bacterial	proteins	
into	 clusters	 from	 the	 COG	 database.32	 The	 remaining	 proteins	
were	classified	into	functional	groups	using	an	innovative	imple-
mentation	of	a	single-linkage	algorithm	on	a	Hadoop	computing	
cluster	using	Hive	and	the	MapReduce	paradigm.35,36	This	imple-
mentation	significantly	reduced	the	run	time	for	nonindexed	que-
ries	and	optimized	clustering	performance.32	Consequently,	nearly	
2	million	proteins	were	combined	 into	half	a	million	 functional	
groups.	Similarly,	the	eukaryotic	database	was	expanded	by	over	1	
million	proteins	with	unclustered	proteins	classified	into	100,000	
new	functional	groups.32	(Fig.	2).

The	UniRef100	clustering	project	showcased	both	the	promise	and	
the	challenges	of	large	biological	data.	The	project	took	the	consid-
erable	efforts	of	an	unusually	diverse	group	of	researchers	along	
with	 multiple	 cloud	 systems	 to	 successfully	 complete	 the	 task.	
Publicly	 available	 cluster	 resources	 are	 struggling	 to	 cope	 with	
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FIG. 1. Model Organism Protein Expression Database (MOPED; moped.protein-
spire.org). (A) MOPED provides querying of protein identification and expres-
sion data across different organisms, tissues, and localizations for different 
experiments. (B) MOPED provides tools for visualizing individual experiment 
data relative to the data within MOPED. 
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influx	of	data	and,	as	a	result,	are	either	no	longer	supported37–39	

or	provide	limited	interactive	and	analytic	capabilities.40,41	These	
problems	highlight	the	pressing	need	in	the	biological	communi-
ty	for	a	scalable	and	efficient	computational	approach	to	visualize,	
explore,	and	analyze	large-scale	biological	data.	
	

Visualizing complex biological data
The	 PSU	 visualization	 platform	 enables	 exploration,	 analysis,	
and	annotation	of	the	continually	expanding	universe	of	protein	
sequences.	 The	 platform	 uses	 a	 multidimensional	 scaling	 of	
sequence	 alignment	 scores	 to	 create	
a	 three-dimensional	 representation	
of	the	protein	universe.	The	PSU	pre-
serves	 important	 grouping	 features	
such	as	relative	proximity	of	function-
ally	similar	clusters	and	clear	structur-
al	separation	between	protein	groups	
of	specific	and	general	functions.	The	
PSU	 is	 scalable,	 integrates	 different	
similarity	 measures	 with	 functional	
and	 experimental	 data,	 and	 facilitates	 sequence	 annotation.	 It	
will	enable	users	to	analyze	new	data	in	the	context	of	the	exist-
ing	 knowledge	 of	 protein	 sequences	 using	 a	 library	 of	 scientific	
tools.31,42	An	example	comparing	sequence	similarity	among	dif-
ferent	COG	functional	classifications	is	shown	in	Figure	3.
	
Community outreach and education
The	 public	 and	 many	 scientists	 lack	 information	 on	 the	 role	 of	
bioinformatics,	 statistics,	 and	 high-throughput	 technologies	 in	
biological	knowledge	discovery.	This	 lack	of	 information	creates	
a	great	need	for	education	and	outreach	in	data-enabled	sciences.	
One	of	the	principal	missions	of	DELSA	Global	 is	outreach	and	
education	 programs.	 To	 fulfill	 this	 mission,	 DELSA	 Global	 has	
endorsed	 two	 projects:	 Social	 Networking	 Platform	 for	 Tool	 Bro-
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kering/Community	Building	and	Matchmaking	and	Training	Data	
Scientists.

In	 addition	 to	 the	 involvement	 in	 DELSA	 Global	 activities,	 the	
Kolker	 Lab	 has	 developed	 a	 number	 of	 educational	 resources,	
including	 instructional	 videos	 on	 proteomics	 data	 analysis	 in	
SPIRE;29,30	 a	 series	 of	 articles	 on	 statistical	 and	 bioinformatics	
concepts	for	the	Encyclopedia	of	Systems	Biology;43	and	interactive	
exhibits	on	proteomics	for	grades	K–12,	demonstrating	the	scien-
tific	principles	of	mass	spectrometry	(MS)	and	chromatography.44	

In	 addition,	 the	 lab	 has	 led	 working	 groups	 on	 education	 and	
outreach	at	a	DELSA	Global	meeting	and	DISWs.20

	
Future Challenges for Complex 
Biological Data

Multi-omics integration
The	 biological	 functions	 of	 organisms	 depend	 on	 complex	 and	
highly	interactive	systems	of	biomolecules,	including	DNA,	RNA,	
proteins,	metabolites,	and	 lipids.	These	biomolecules	are	 rapidly	
being	 characterized	 by	 new	 high-throughput	 multi-omics	 data	
from	 genomics,	 metagenomics,	 transcriptomics,	 proteomics,	
metabolomics,	and	 lipidomics	experiments.	Future	data-enabled	
biological	 discoveries	 will	 require	 high-throughput	 data	 to	 be	
integrated	and	analyzed	 jointly	across	multi-omics	experiments.	
However,	 current	 public	 databases	 and	 analysis	 tools	 typically	
focus	 on	 a	 single	 omics	 (principally	 genomics),	 biomolecule,	 or	
organism,	overlooking	the	complex	interrelationships	of	systems	
biology.	Development	of	valuable	integrated	resources	is	challeng-
ing	due	to	the	5	Vs	of	big	data.	The	scale	of	the	data	and	the	com-

plexity	of	 the	 technologies,	 formats,	
ontologies,	and	methodologies	come	
together	in	a	whirlpool	of	potentially	
useful,	but	often	bewildering,	cross-
references.	To	meet	these	challenges,	
we	will	transform	our	current	single-
omics	 resources	 into	 a	 new	 Multi-
Omics	 Profiling	 Expression	 Data-
base	that	integrates	data	across	omics	
experiments.	 With	 this	 resource,	

meta-analysis	studies,	such	as	was	achieved	once	for	yeast,	will	be	
more	easily	performed,	and	similar	approaches	can	be	expanded	
to	other	organisms.45

	
Pathway analysis
Most	analysis	 tools	 for	complex	biological	data	do	not	 take	 into	
account	the	wealth	of	available	biological	knowledge.	For	exam-
ple,	current	pathway	analysis	models	largely	ignore	the	underlying	
graph	structure	of	a	pathway	and	the	catalytic/inhibitory	relation-
ships	 it	 implies.	 Discarding	 this	 information	 reduces	 the	 power	
of	the	analysis	and	prevents	testing	the	correct	hypothesis	of	the	
pathway	effect	on	expression	levels.	To	address	this	limitation,	the	
Kolker	 Lab	 has	 developed	 Differential	 Expression	 Analysis	 for	
Pathways	 (DEAP).	 The	 new	 pathway	 analysis	 approach	 utilizes	

“IT IS CLEAR THAT THE LIFE 
SCIENCES HAVE BECOME 

BIG DATA AND 
DATA-ENABLED SCIENCES.”

FIG 2. Protein classification paradigm. A total of 5 out of 10 million pro-
teins were assigned to different COG/KOG functional categories. The 
remaining proteins were clustered-based all-versus-all BLAST align-
ments.
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information	on	pathway	structure	to	test	the	enrichment	hypoth-
esis	and	to	compare	expression	patterns	across	the	conditions.	

Annotation resources
Sequence	 orthology	 has	 long	 been	 utilized	 to	 denote	 functional	
similarity;	as	such,	clusters	of	orthologous	sequences	are	used	to	
extend	functional	annotation	of	genes	and	proteins.	One	promi-
nent	 example	 of	 such	 a	 resource	 is	 the	 COG	 database,	 whose	
papers	 have	 been	 cited	 more	 than	 4,500	 times	 (REF).	 Current-
ly,	 the	 prokaryotic	 COG	 database	 contains	 over	 190	 thousand	
proteins	 grouped	 into	 4,873	 clusters.	 However,	 despite	 the	 high	
number	 of	 citations	 and	 user	 volume,	 high	 sustainability	 and	
maintenance	costs	have	forced	the	resource	to	become	stagnant.	
As	it	stands,	the	COG	database	has	not	been	updated	since	2006.	
This	is	another	example	of	unsustained	resources,	a	pressing	issue	
recently	reviewed	in	“The	2012	Nucleic	Acids	Research	Database	
Issue	and	the	online	Molecular	Biology	Database	Collection.”6	

With	the	rapid	increase	in	data	volumes,	maintaining	and	enhanc-
ing	a	resource	like	COG	requires	new	powerful	technologies	and	
always-increasing	 computing	 resources.	 This	 requirement	 was	
highlighted	by	all-versus-all	sequence	alignment	project	that	was	
made	possible	through	combined	efforts	with	Microsoft	Research	
and	 Amazon	 Web	 Services.32	 The	 skills	 and	 lessons	 acquired	 in	
this	project	have	inspired	Kolker	Lab	to	further	our	collaborative	
work	on	revitalizing	and	expanding	the	COG	database.

Cloud computing
Cloud	 technologies	 offer	 a	 viable	 solution	 to	 data-intensive	 sci-
ence	through	scalable	computing	capabilities	and	large	data	stor-
age.8,46–48	In	addition,	the	large	scale	of	data	intensifies	the	need	for	
easy	and	efficient	access	to	the	analysis	software	and	bioinformat-
ics	tools.	The	informal	DELSA	Global	community	survey	showed	
a	strong	appeal	to	adopting	the	successful	industry	framework	of	

FIG. 3. The Protein Sequence Universe (PSU). The PSU tool provides vi-
sualization of complex protein sequence data. In this example, COG 
functional category is overlaid across sequence similarity data. The 
tightly clustered COG categories at the center of the graphic represent 
very similar functions (ABC-type ATP-ases), while the more dispersed 
COG categories represent disparate and more general functional cat-
egories.

apps	stores	(e.g.,	Amazon,	Apple,	Google,	Microsoft)	to	allow	for	
better	dissemination	and	adaptation	of	biological	and	multi-omics	
research	tools.	Finally,	prize	competitions	are	a	powerful	and	un-
derutilized	way	to	accelerate	and	deepen	scientific	discoveries	and	
drive	development	of	new	tools	and	applications.49,50

Conclusions

It	 is	 clear	 that	 the	 life	 sciences	 have	 become	 big	 data	 and	 data-
enabled	 sciences.	 Data-enabled	 science	 may	 have	 at	 its	 core	 the	
generation	of	data	in	the	lab,	but	transforming	the	data	to	knowl-
edge	 and	 then	 action	 goes	 far	 beyond	 the	 lab.	 The	 transforma-
tion	will	require	massive	resources	and	a	transdisciplinary	effort	
put	 forth	 by	 the	 scientific	 community	 to	 solve	 the	 challenges	
of	big	data.	The	need	 is	urgent	and	growing,	given	 the	 issues	of	
data	 generation	 outstripping	 computing	 power	 and	 the	 lack	 of	
reproducibility	of	research.	Organizations	like	DELSA	Global	can	
inform	the	life	sciences	community,	lead	the	way	for	groups	like	
the	Kolker	Lab	to	put	forth	new	solutions	to	big	data	challenges,	
and	create	a	new	paradigm	in	the	life	sciences	of	cooperation,	col-
laboration,	and	sharing	at	every	level.	
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